The Cellular Distribution and Ser262 Phosphorylation of Tau Protein Are Regulated by BDNF In Vitro
نویسندگان
چکیده
The brain-enriched microtubule-associated protein tau, a critical regulator of cytoskeletal dynamics, forms insoluble aggregates in a number of neurodegenerative diseases termed tauopathies, including Alzheimer's disease (AD). Hyperphosphorylation of tau protein is an important mechanism for aggregation, so many studies on the pathogenesis of AD and other tauopathies have focused on regulation of tau phosphorylation by kinases and phosphatases. Less studied are mechanisms of tau transcriptional and post-transcriptional regulation by extracellular signals such as BDNF and how such changes alter neuronal function. Previously, we reported that tau is required for morphological plasticity induced by BDNF. Here, we further explore tau modification during BDNF-induced changes in neuronal cell morphology. In undifferentiated SH-SY5Y cells lacking neurites, tau formed a sphere within the soma as revealed by immunocytochemistry. In contrast, tau was enriched in the neurites and sparse in the soma of SH-SY5Y cells induced to differentiate by retinoic acid (RA). Treatment with RA also increased total tau protein levels but decreased expression of tau phosphorylated at Ser262 as determined by Western blot. Both effects were further enhanced by subsequent BDNF treatment. Upregulation of tau protein and downregulation of p-Ser262 tau were correlated with total neurite length (R = .94 and R = -.98, respectively). When primary E18 hippocampal neurons were treated with nocodazole, a blocker of microtubule polymerization, nascent neurites were lost and tau shifted to the soma. This process of retrograde tau movement away from neurites was reversed by BDNF. These results indicate that tau is redistributed to neurites and dephosphorylated during RA- and BDNF-mediated differentiation.
منابع مشابه
P 97: Neurodegeneration Induced by Tau protein
Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...
متن کاملEffect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats
Objective(s): Cyclic AMP (adenosine monophosphate) response element-binding protein (CREB) and Brain-derived neurotrophic factor (BDNF) are reported to broadly involve in learning capacity and memory. BDNF exerts its functions via tropomyosin receptor kinase B (TrkB). BDNF transcription is regulated by stimulating CREB phosphorylation. The CREB-TrkB-BDNF pathway is rep...
متن کاملA DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration.
Hyperphosphorylation of the microtubule associated protein tau is detected in the brains of individuals with a range of neurodegenerative diseases including Alzheimer's disease (AD). An imbalance in phosphorylation and/or dephosphorylation of tau at disease-related sites has been suggested to initiate the abnormal metabolism and toxicity of tau in disease pathogenesis. However, the mechanisms u...
متن کاملMARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies
BACKGROUND The progression of Alzheimer's disease (AD) is associated with an increase of phosphorylated tau in the brain. One of the earliest phosphorylated sites on tau is Ser262 that is preferentially phosphorylated by microtubule affinity regulating kinase (MARK), of which four isoforms exist. Herein we investigated the expression of MARK1-4 in the hippocampus of non-demented elderly (NDE) a...
متن کاملP 142: Air Pollution\'s Triggering Role in Tau Protein Hyper Phosphorylation; A Sign of Alzheimer Disease
Nowadays, air pollution is one of the major problems in developed and developing countries. In recent years, effects of air pollution on neuroinflammatory diseases such as Alzheimer disease and Parkinson disease have been studied. Researches on polluted cities citizens indicate increasing in central nervous system (CNS) inflammatory factors in comparison with clean cities; also air pollution ex...
متن کامل